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doubled CO,, to explore the response to changing boundary
conditions.

Individual simulations are carried out using idle processing
capacity on personal computers volunteered by members of the
general public””. This distributed-computing method'*'*"* leads to
a continually expanding data set of results, requiring us to use a
specified subset of data available at a specific point in time. The
analysis presented here uses 2,578 simulations (>100,000 simulated
years), chosen to explore combinations of perturbations in six
parameters.

The 2,578 simulations contain 2,017 unique simulations (dupli-
cates are used to verify the experimental design—see Methods).
Figure 1a shows the grand ensemble frequency distribution of global
mean, annual mean, near-surface temperature (T) in these 2,017
simulations, as it develops through each phase. Some model
versions show substantial drifts in the control phase owing to the
use of a simplified ocean (see Supplementary Information). We
remove unstable simulations (see Methods) and average over
initial-condition ensembles of identical model versions to reduce
sampling uncertainty. The frequency distribution of initial-con-
dition-ensemble-mean time series of T, for the resulting 414 model
versions (for which the initial-condition ensembles involve 1,148
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Tales of future weather

W. Hazeleger'?**, B.J.J.M. van den Hurk4, E. Min', G.J. van Oldenborgh’, A.C. Petersen**,
D.A. Stainforth®°", E. Vasileiadou*® and L.A. Smith®”

Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes
weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to
avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations,
statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then transl|
into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternati
numerical weather prediction models in a hypothetical climate setting can provide tailored na i
simulations of high-impact weather in a future climate. This ‘tales of future weather' approach will aid in the interpretation of
1 lution si i fally provides y, more realistic and more physically consistent

Al g
pictures of what future weather might look like.
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Distribution of Climate Sensitivity from a perturbed-parameter

ensemble
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“The shape of the distribution is
determined by the parameters
selected for perturbation and the
perturbed values chosen, which
were relatively arbitrary.”

“In our case even the physical
interpretation of many of these
parameters is ambiguous.”
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Challenge: How can we relate models and reality?

e A probability distribution across
different models is fundamentally
arbitrary because we have no
meftric for the space of possible
models.

e Even a distribution across a
perturbed parameter ensemble is
arbitrary because the parameter
space is not defined.

predicting
. our
climate
future

DAVID STAINFORTH

4
(=1+0.25)

2
(=1:0.5)

66

52

47

68

48

39

7

56

49

72

58

50

43

37

33

75

0.25

60

50

45

43

40

39

37

62

51

50

49

48

47

46

63

0.5

63

61

0.75

60

56

54

53

51

7

69

66

125 15 175

64

2

4

(=1+05)  (=1+0.25)

Probability of the result
of a pin placed randomly in the board

abili

RRRRRR

Probability of the result
of a pin placed randomly in the board

ability

RRRRRR

© Stainforth, OUP, 2023



All models are substantially different to reality.

Timeseries of Global Average Temperature
Shown as differences from the average over 1850-1900 in each timeseries.
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All models are substantially different to reality.

Timeseries of Global Average Temperature
Shown as differences from the average over 1850-1900 in each timeseries.
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Chasing better models is unlikely to be fruitful at the moment.

e We don’t know what we're aiming for.
We haven't studied the question: when would a model be
good enough to answer the questions we're asking.

e We have no means of forecast verification so we rely on
model fidelity.
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Non-discountable Envelopes
Lower Bounds on the Maximum Range of Uncertainty
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Non-discountable Envelopes
Lower Bounds on the Maximum Range of Uncertainty

A Domain of Possibility
(In response to doubling atmospheric carbon dioxide)
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Non-discountable Envelopes

Lower Bounds on the Maximum Range of Uncertainty
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Storylines as a route to
identifying possible futures
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Society is vulnerable to extreme weather events and, by ex!enslon to human impacts on future events. As climate :hanges
weather patterns will change The search is on for more eff dologies to aid decisit both in miti to
avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations,
statistical bias correction, downscaling to the spatial and temporal scales relevant to declslon makers and then translatlon

into quantltles of interest. The veracity of this approach cannot be tested, and it faces in-| Alter
weather prediction models in a climate setting can provide tailored narratives of high-resolution
slmulatlons of hlgh |mpact weather ina future :Ilmate Thls ‘tales of future weather' approach will aid in the interpretation of
p 'y, more realistic and more physically consistent

pudures of what future weather might look Ilke

How might one construct Tales to inform adaptation decisions 4
and mitigation policy? The use of global high-resolution
atmosphere models that resolve the synoptic scales (model grid-
spacing is currently about 10 km and is expected to improve in the
near term) — the reliability of which are well understood within the
frame of numerical weather prediction — allows a more physically
coherent expression of what weather in an altered climate could
feel and look like?. It is possible to provide a limited set of future
weather scenarios that explore a range of plausible realizations
of future climate. The scenarios are imposed onto the boundary
conditions (sea surface temperatures, atmospheric composition,
land use and so on) of a high-resolution model. The boundary
conditions may be obtained from traditional coupled climate
model simulations of future climate, but they could equally well be
inspired by other sources, including palaeoclimate data, sensitivity
experiments with coupled models, archives of past meteorological
analyses and forecasts, or even simple constructions of physically
credible possibilities. The synoptic patterns related to the 2003 heat
wave or the 2013 floods in Europe, for instance, could be simulated
repeatedly using expert-elicited patterns of changes in sea surface
temperatures and radiative forcing representative of a warmer
world. In this way a wider range of plausible realizations of an
alternative climate can be considered than with traditional coupled
climate model experiments.



Storylines as a route to identifying possible futures

lazeleger'2>*, B.J.JLM. van den Hurk', E. Min', G.J. van Oldenborgh', A.C. Petersen'
, E. Va: and L.A. Smith”

How might one construct Tales to inform adaptation decisions and mitigation policy? The use of
global high-resolution atmosphere models that resolve the synoptic scales (model grid-spacing is
currently about 10 km and is expected to improve in the near term) — the reliability of which are well
understood within the frame of numerical weather prediction — allows a more physically coherent
expression of what weather in an altered climate could feel and look like25. It is possible to provide
a limited set of future weather scenarios that explore a range of plausible realizations of future
climate. The scenarios are imposed onto the boundary conditions (sea surface temperatures,
atmospheric composition, land use and so on) of a high-resolution model. The boundary conditions
may be obtained from traditional coupled climate model simulations of future climate, but they
could equally well be inspired by other sources, including palaeoclimate data, sensitivity
experiments with coupled models, archives of past meteorological analyses and forecasts, or even
simple constructions of physically credible possibilities. The synoptic patterns related to the 2003
heat wave or the 2013 floods in Europe, for instance, could be simulated repeatedly using expert-
elicited patterns of changes in sea surface temperatures and radiative forcing representative of a
warmer world. In this way a wider range of plausible realizations of an alternative climate can be
considered than with traditional coupled climate model experiments.
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Questions / Debate

d.a.stainforth@Ise.ac.uk

climateconfidence.net

@climatehat
LinkedIn

Please email me if you would like
to receive a discount code to get
30% off my book from oup.com

predicting
~our
climate
future

what we know,
what we don’t know,
and what

we can’t know

DAVID STAINFORTH
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