Spatial modeling of extraction and enforcement in developing country protected areas (Albers, 2010, Resource and Energy Economics)

Professor Elizabeth J Z Robinson

Department of Geography and the Environment

Acting Dean, Global School of Sustainability

London School of Economics and Political Science

10 February 2025

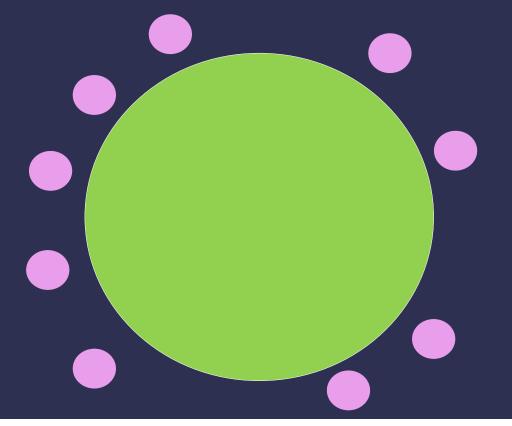
Optimal enforcement and Pragmatic versus dogmatic approaches to protected area management and Incorporating distance into economics models and What place for theory these days

Today's talk

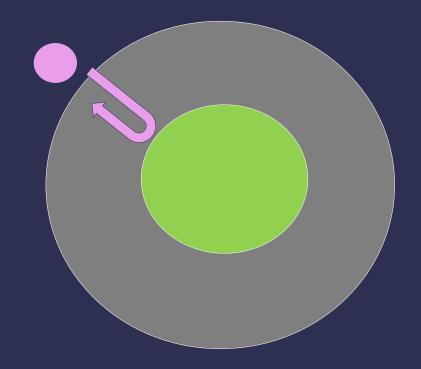
- Before Albers' 2010 paper
 - Becker and optimal enforcement
- Albers' paper
- Extensions
- Relevance to 2025

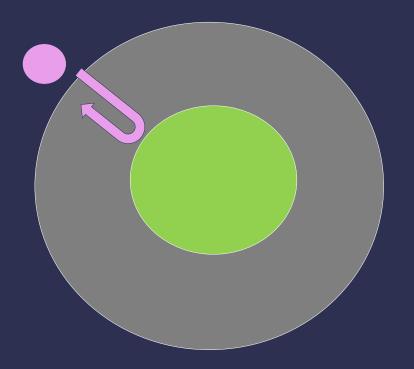
Gary Becker

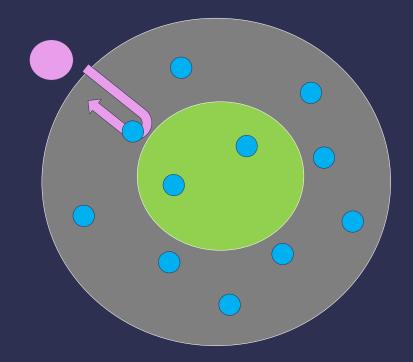
Bring economics into the law of enforcement

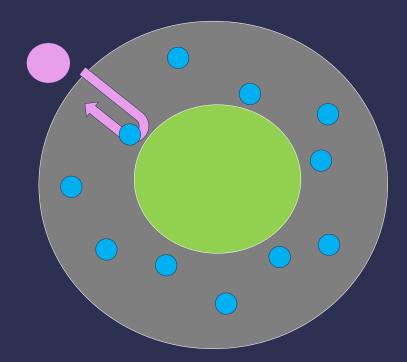

Key aspects of Prof Albers' paper

- Model
 - Focus on role of distance as a cost
 - Distance and enforcement as substitutes
- Take home messages
 - Pragmatic approaches versus dogmatic

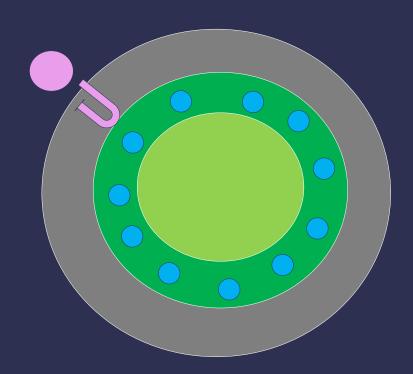

 Imagine a protected area with people living around the outside


- Extractors make a "distance decision"
 - How far into the forest to go to collect resources
- As such, protected area manager should incorporate spatial considerations into their enforcement decisions


- Extractors make a "distance decision"
 - How far into the forest to go to collect resources
 - What makes them turn around?
 - Some non-linearity in the model

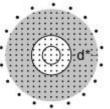

- Recognising extractor behaviour, what might an optimal enforcement strategy look like
 - That takes explicit account of how distance influences extractors

- No point in protecting deep in the forest
 - Extractors don't go there even without enforcement
- Can concentrate patrols closer to the edge of the forest
 - Some deterrence to extractors
 - But probably not full deterrence
 - Also therefore implications for conflict



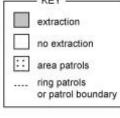
Extension to model

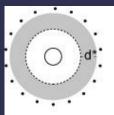
- If conflict is recognised as costly, can "compromise"
 - Allow some extraction in a buffer zone
 - Enforce a ring
 - Leave core where villagers will not enter
- What if multiple patches of forest
- Extractors can switch which patch they go to



Schematic of results

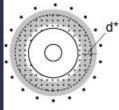
a. No Patrols


 $\phi(d) = 0$ for all d

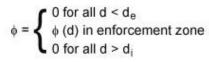

b. Homogeneous Patrols

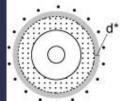
 $\phi(d) = \phi_A$ for all d

c. Boundary Patrols



KEY


d. Interior Ring Patrols


φ (d)=0 except at ring at d*

e. Enforcement Zone

(optimal d within zone)

f. Enforcement Zone

(optimal d at zone boundary)

 $\phi = \begin{cases} 0 \text{ for all } d < d_e \\ \phi (d) \text{ in enforcement zone} \\ 0 \text{ for all } d > d_i \end{cases}$

Implications and relevance to 2025

- What is lost if distance and space is not explicitly accounted for
- How a better understanding of spatial aspects of resource extraction and enforcement can reduce "costs of conflict"
- In the era of big data, do we still need theory?
- Zoning for carbon offsets
- Zoning for blue carbon

Thank you!

